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The flow over a backward-facing step with laminar separation was investigated 
experimentally under controlled perturbation for a Reynolds number of 11 000, 
based on a step height h and a free-stream velocity U,. The reattaching shear layer 
was found to have two distinct modes of instability: the ‘shear layer mode’ of 
instability at  St, x 0.012 (St, = f8 /U0,  8 being the momentum thickness a t  separation 
and f the natural roll-up frequency of the shear layer); and the ‘step mode’ of 
instability at St, x 0.185 (St, = j’h/U,). The shear layer instability frequency reduced 
to the step mode one via one or more stages of a vortex merging process. The 
perturbation increased the shear layer growth rate and the turbulence intensity and 
decreased the reattachment length compared to the unperturbed flow. Cross-stream 
measurements of the amplitudes of the perturbed frequency and its harmonics 
suggested the splitting of the shear layer. Flow visualization confirmed the shear 
layer splitting and showed the existence of a low-frequency flapping of the shear 
layer. 

1. Introduction 
Turbulent shear flows with separation and subsequent reattachment are grouped 

under complex flows. High turbulence intensity and localized mean or instantaneous 
reverse flow are common to these flows. Based on the flow geometry, such flows are 
usually classified into four groups (figure 1). Flows with separation and reattachment 
are fairly common in practical engineering devices, such as airfoils with a separation 
bubble, buildings, combustors, pipes with expansion, yet after four decades of 
research, our understanding of reattaching flows is far from complete. 

The first review of the experimental data for reattaching flows was provided by 
Bradshaw & Wong (1972) along with some of their own data for flow over a 
backward-facing step (figure la). Bradshaw & Wong found a value of L (which is 
considered to be a typical scale of the energy-containing eddies in a plane mixing 
layer) equal to 0.0122 at a downstream location x/h = 10 (where h is the step height 
and x is the downstream distance from the separation point) or about half the value 
in a plane mixing layer. Based on this single point measurement, they concluded that 
the shear layer split in half at  the reattachment point and caused the sudden decrease 
of turbulence lengthscale. Bradshaw & Wong also argued that an alternative 
explanation of this drop in turbulence lengthscale at reattachment would be to 
suppose that the larger eddies were deflected alternately upstream and downstream 
rather than actually split. Measurements by both Kim, Kline & Johnston (1978) and 
Chandrsuda (1975) show that the intermittency is less than unity near the wall just 
downstream of reattachment. This result supports the alternative hypothesis of 
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FIGURE 1.  Various geometries to generate reattaching shear layer flows. (a) Backward facing step 
flow, ( b )  flow over a normal plate with splitter plate in the middle, (c) flow over a blunt plate, and 
(d )  flow over a backward-facing step with various shapes of leading-edge nose. 

Bradshaw & Wong that the eddies move alternately upstream and downstream and 
agree with the tentative conclusion of McGuinness (1978), who studied the large- 
eddy structure in a reattaching shear layer behind an orifice a t  the entrance of a pipe. 
However, a recent crude flow visualization by Eaton & Johnston (1980) showed no 
evidence of large eddies being swept upstream. 

Other geometries with a separation and reattaching shear layer have received 
relatively less attention compared to backward-facing step flows. The simple case of 
a normal two-dimensional flat plate with a long central splitter plate in its wake 
(figure l b )  is typical of bluff body flows and has been studied recently by Ruderich 
& Fernholz (1986) and Castro & Haque (1987). 

Ruderich & Fernholz (1986) showed self-similar behaviour for the mean and 
fluctuating quantities in a short region upstream of reattachment and ' profile 
similarity ' in the separated shear layer and along the splitter plate downstream from 
reattachment. The data of Castro & Haque (1987) indicate that the turbulence 
structure of the separated shear layer differs from that of a plane mixing layer 
between two streams. On the other hand, several authors (Baker 1977; Kim et al. 
1978; Eaton & Johnston 1980) have pointed out the similarity of the reattaching 
shear layer over a backward-facing step flow to a mixing layer. 

Another geometry of a reattaching shear layer, i.e. the forward-facing blunt plate 
(figure 1 c ) ,  has received some attention from, among others, Cherry, Hillier & Latour 
(1984) and Kiya & Sasaki (1983). A common feature of these flows is the presence of 
a low-frequency unsteadiness associated with a low-frequency flapping of the shear 
layer. While the explanation of this low-frequency unsteadiness remains inconclusive, 
this phenomenon has also been observed clearly in step flows (Eaton & Johnston 
1980) and flows over surface-mounted fences (Castro 1981). 
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It is now well known that both plane mixing layers (Brown & Roshko 1974; 
Winant & Browand 1974) and axisymmetric mixing layers (Crow & Champagne 
1971; Zaman & Hussain 1980) grow by successive pairings of spanwise vortical 
structures. Kibens (1980) observed that a perturbed jet underwent multiple stages of 
vortex pairing, by which the natural shear layer instability frequency reduced to the 
‘ jet column ’ instability frequency. The ‘jet column ’ mode of instability is more 
commonly known as the ‘preferred mode’ of a jet. The dominant structure of a 
mixing layer is also identified as the ‘preferred mode’. 

The pairing of the shear layer vortices in a backward-facing step flow has been 
reported previously by, among others, Rothe & Johnston (1979), Eaton & Johnston 
(1980) and Roos & Kegelman (1986). 

In recent years, the dynamics of the coherent structures, the nature of the shear 
layer instability wave itself and the role of the coherent structures in mixing, heat 
transfer and in jet noise have been investigated extensively through experimental, 
theoretical and computational research for unbounded shear flows. The same is not 
true for bounded shear flows. 

Although numerous studies of the basic flow over a backward-facing step have 
been conducted to date (see Eaton & Johnston 1981 for a review), only recently has 
attention been focused on the coherent vortical structure in a reattaching shear layer 
(Eaton & Johnston 1980; Pronchick & Kline 1983; Troutt, Scheelke & Norman 
1984). Later, Bhattacharjee, Scheelke & Troutt (1986) and Roos & Kegelman (1986) 
studied the flow over a backward-facing step with a controlled perturbation. 
Bhattacharjee et al. (1986) claimed that the most effective non-dimensional forcing 
frequency St, ( = fh/Uo,  where f is the natural roll-up frequency of the shear layer 
and U, the free-stream velocity) was between 0.2 and 0.4. Roos & Kegelman (1986) 
found the natural instability frequency of the shear layer to be at St, = 0.4 for 
laminar separation. A universal St, value similar to the preferred mode of a jet 
(Hussain & Zaman 1981) or a mixing layer has yet to emerge for a reattaching shear 
layer. 

The objectives of this paper are to study the nature of the instability wave, its roll- 
up into an organized large-eddy structure and the subsequent evolution of this 
structure in a flow over a backward-facing step under controlled perturbation. The 
role of controlled perturbation in modifying, and thus ultimately controlling, the 
flow field will also be studied. 

2. Experimental apparatus and techniques 
2.1. Description of the test facility and the step 

The experiments were performed in the subsonic wind tunnel of the Mechanical 
Engineering Department a t  KFUPM. The cross-section of the test section is 1.1 m by 
0.8 m, with the length being 3 m. The velocity range in the test section was 2.5 to 
25 m/s, and the free-stream turbulence level was 0.1 YO of the free-stream velocity at  
5.5 m/s. 

A two-dimensional backward-facing step with an aspect ratio of 20 and step height 
h = 3 cm was used. The schematic of the test set-up is given in figure 2(a). All 
working surfaces were constructed from smooth laminated wood. The two- 
dimensionality of the flow was checked by measuring the longitudinal mean and 
fluctuation velocity at four spanwise locations at  x /h  = 2 and 13 (details of which 
have been given in Khan 1990). Also, a smoke wire placed along the spanwise 
direction at a height of 2 mm from the plate surface and 4 cm upstream of the 
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FIGURE 2. (a)  Schematic of the experimental set-up with the backward-facing step. 
( b )  Details of the perturbation system. All dimensions are in mm. 

separation point showed laminar two-dimensional flow in the spanwise direction at 
separation. The downstream length of the bottom plate from the separation point 
was 100 cm. Along the centreline of the bottom plate, 2 mm diameter holes were 
drilled 2 cm apart to measure the surface static pressure distribution with Pitot 
tubes. 

2.2. The perturbation technique 

The perturbation technique used in this study was similar to those used by Hasan 
(1983) and Kibens (1980) to study the axisymmetric jet flow structures. The flow 
perturbation was introduced through a narrow slit of 1 mm width a t  the separation 
point. The details of the separation point are shown in figure 2(b). 

The 20 x 20 mm cavity in the aluminium section was connected to four copper 
tubes of 10 mm diameter. The ends of the copper tubes were connected to the speaker 
box with 12 mm tygon tubes of equal length. The equal length of the tubes ensured 
that the perturbation a t  point B would be a t  the same phase across the whole width 
of the plate. The variation of perturbation amplitude was less than 5% in the 
spanwise direction over 4 step heights. A 30 cm diameter loudspeaker (150 W) was 
driven by a signal generator and an audio amplifier to introduce the perturbation a t  
desired frequencies. 
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2.3. The measurement instrumentation 
The velocity data were measured with a DISA 5 5 M 0 1  standard hot-wire 
anemometer system. The anemometer was operated in the constant-temperature 
mode with a 50% overheat ratio. The hot-wire signal was linearized because of the 
high level of turbulence intensity present in the flow field. The probe was moved in 
the x- and y-directions (and for some cases in z )  by a remote controlled traverse 
system. The resolution of the traverse system was 0.06 mm. The coordinate system 
for the measurements is shown in figure 2(a) .  The spectral analysis of the velocity 
signal was performed with a B & K 2033 high-resolution signal analyser with 400 
lines. Each spectrum represents the average of 64 spectra. The hot-wire data from 
both the reference probe and the moving probe, aa well as the signal generator 
output, were recorded in a 4-channel B & K 7033 h p e  recorder for later analysis. 

Wall static pressures were measured with Pitot holes on the bottom plate. The 
resolution of the pressure measurement manomekr was 0.01 mb. 

Flow in a reattaching shear layer is complicated by the presence of recirculation, 
reverse flow and a high level of turbulence intensity. These factors impose some 
restrictions on the accuracy of conventional hot-wire measurements. A comparison 
of pulsed-wire and single-hot-wire_wclsurements in a backward-facing step flow by 
Eaton & Johnston (1980) shoyed good agreement between the two measurement 
techniques in the region of peak turbulence intensity, i.e. near the centre of the shear 
layer. They established that the single-hot-wire measurements of u2 are expected to 
be lower than those taken with a pulsed wire, althorrgh probably by only 1 or 2 YO. 
For flow over a normal plate, Castro & Haque (1987) and Jaroch & Fernholz (1989) 
showed that on x -wire can undermeasure the Reynolds stresses compared to pulsed- 
wire measurements. It should be emphasized that most of the data presented here 
were measured in the outer part of the shear layer where hot-wire measurements are 
reliable. The reader should be cautioned that the d&ta in figure 14 are most likely to 
be affected because of hot-wire usage. The peak values in figure 14 are expected to be 
lower than the actual values by as much as 10 YO, the latter being presented mainly 
to give a qualitative impression of the flow structure rather than for any precise 
quantitative interpretation. 

The reattachment point was determined hy a surface-oil visualization technique. 
The position of reattachment point usually changes. The accuracy of the surface-oil 
visualization technique is estimated to be k0.5h. 

Most of the measurements, unless otherwise specified, were made for a free-stream 
mean velocity, U,, of 5.5 m/s, equivalent to a Reynolds number, Reh, of 11 000 based 
on the step height h. The corresponding Re, (Reynolds number based on the 
separation momentum thickness 0) was 240. For perturbed cases, the perturbation 
level, up/Uo, at x = 0 was always 1.5% at the %, (where U / U ,  = 0.9) transverse 
location. This was monitored continuously with a fixed reference probe. At the 
location, the corresponding perturbation level was approximately 2.5 Yo. 

3. Results and discussion 
3.1. The initial conditian 

In reattaching flows, one of the most important dependent parameters characterizing 
the flow field is the reattachment length, xB, which varies between 4.9h and 8.2h for 
the turbulent reattaching flows with horizontal separation. Among the principal 
parameters affecting xR is the initial condition of the boundary layer, i.e. the state 
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FIGURE 3. Normalized longitudinal mean velocity U / U ,  (open symbols) and fluctuation intensity 
u/Uo (solid symbols) profiles of the boundary layer at  the separation point for Uo = 5.5 m/s : 
_____ , the Blausius profile; 0 ,  unperturbed flow; A, perturbed flow for St, = 0.314. 

0 1.5519 0.6555 2.37 
57.5 1.3645 0.6762 2.02 

TABLE 1.  Boundary-layer parameters for U, = 5.5 m/s. 

of the boundary layer (laminar/turbulent) at separation. The significance of the 
initial condition in the reattaching shear layer was first recognized by Eaton & 
Johnston (1980). Thus, it is important to document the boundary-layer data a t  
separation. 

Figure 3 shows the mean velocity U and longitudinal fluctuation intensity u 
profiles for both natural (unperturbed) and perturbed flows at x = 1 mm downstream 
of the separation point for U, = 5.5 m/s. These data represent the initial state 
of the separating boundary layer. The dotted line in figure 3 is the Blasius profile 
and shows good agreement with the mean velocity profiles, suggesting that 
the separation boundary layer is laminar. The perturbed flow in figure 3 is for the 
St, = 0.314. Note that, as a result of perturbation, the mean velocity increases 
slightly for 0 < y/S* < 1 (6* is the boundary-layer displacement thickness), while it 
shows a slight decrease for 2 < y/S* < 4. The perturbation increases the peak 
turbulence intensity level from 0.015 to nearly 0.06. This significant increase in peak 
turbulence intensity is due to more organized and coherent vortex shedding from 
separation as a result of perturbation compared to the unperturbed flow. All the data 
reported in this paper are for the initial conditions shown in figure 3. The boundary- 
layer parameters corresponding to the data in figure 3 are shown in table 1. 

Among other measures, the effect of controlled perturbation on the flow field can 
best be described by the reattachment length, xR, which in turn affects the surface 
pressure ( p )  distribution along the bottom plate. 
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FIGURE 4. Surface static pressure coefficient C, for unperturbed and perturbed flow for 

uo = 5.5m/s. The St, values are: 0 ,  0; 0,  0.218; A, 0.49; ., 0.845. 

FIQURE 5. Instantaneous smoke visualization photographs at Uo * 4 m/s (Re, * 9000). The flow 
is from right to left. 

3.2. The surface pressure distribution 
The mean static surface pressure distribution in x is shown in figure 4 for both 
unperturbed and perturbed flows. The pressure distribution is expressed in terms of 
the pressure coefficient C,, defined as 

The arrows in figure 4 indicate the mean reattachment point obtained by surface-oil 
visualization. Compared to the variation of C, for unperturbed flow, perturbation at 
all frequencies shifts the reattachment point approximately one step height upstream 
and lowers the maximum C, value. Castro & Haque (1988) noted that the 

co = ( P - P o ) I O . ~ P G *  
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reattachment length decreased with increasing turbulence level for flow over a 
normal plate with splitter. The C ,  value for Castro & Haque’s experiment did not 
change with increasing turbulence level, suggesting only an upstream shift of the 
entire flow field. For the present study, the change in C, values results from the 
change in the organized large-scale structure due to perturbation. The basic effect of 
the perturbation appears to be an increased growth rate of the shear layer and thus 
the upstream shift of the reattachment point. A similar upstream shift of the 
reattachment point in backward-facing step flows due to perturbation have been 
reported by Bhattacharjee et al. (1986) and Roos & Kegelman (1986). 

Roshko & Lau (1965) first proposed a modified pressure coefficient C,, defined by 

(where Cprnin is the minimum value of C,) for static pressure data of a reattaching 
shear layer. The wall static pressure data of figure 4 were used to calculate Cpw. Its 
peak value was the minimum ( x 0.12) for perturbation at St, x 0.018. Perturbation 
at St, x 0.017 has been found to suppress the turbulence intensity of axisymmetric 
jet and plane mixing layers (Zaman & Hussain 1981) as well as axisymmetric jet 
noise (Hussain & Hasan 1985) via large-scale coherent structure modifications. The 
strong correlation between the minimum C,, peak and the perturbation a t  
St, x 0.018 indicates that the peak value of C,, is a reflection of the energetic large- 
eddy structures in the shear layer passing through the reattachment point. 

3.3 Some visual observations 
Flow visualization plays a critical role in understanding turbulent flows, especially 
the complex ones. This has been underscored by the dramatic pictures of large 
organized structures in a plane mixing layer by Brown & Roshko (1974). While flow 
visualization may not provide enough quantitative data, it gives significant 
information crucial to understanding the flow and interpreting the measurements. 
Keeping this in mind, some visualization experiments were performed with 
U, x 4.0 m/s. The flow was seeded continuously with smoke. The (z, y)-plane along 
the centre of the plate (i.e. z = 0) was illuminated with a laser sheet of light. The 
pictures were taken with a minolta SLR camera using Kodak ASA lo00 film. 

A number of photographs showing various instantaneous events observed during 
visualization for the unperturbed flow are presented in figure 5. The flow is from right 
to left. The step is visible at  the right-hand edge of the photographs. 

Figure 5 (a, b )  shows rolled up vortices after separation and merger of the vortices. 
In figure 5 ( b ) ,  the merging of two vortices is very clearly observed at  z / h  x 3.5, where 
the cores of the paired vortices are still visible. These photographs confirm that the 
reattaching shear layer grows by vortex merging similar to plane mixing layers. 

After separation, one would expect the shear layer to deflect downward and 
reattach on the bottom plate. The downward deflection of the shear layer seen in 
figure 5 (a) was not continuous, but it reversed intermittently. The reattachment 
point was found to be unsteady and moved upstream intermittently in bursts. The 
sudden upstream shift of the reattachment point appeared to split the shear layer 
into two halves (figure 5 c ) ,  which has not been reported previously. The upstream 
shift of the reattachment point compressed the fluid trapped underneath the shear 
layer. Most of the compressed fluid was ejected by pushing the shear layer outward. 
The early phase of the shear layer outward movement is captured in figure 5 ( 4 ,  
which also shows the remerging of the split shear layer. The structures of the two 
layers are locked like chain links. Three pairs of structures are simultaneously visible, 
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FIQTJRE 6. Oscilloscope trace of outer shear layer velocity signal at x = 2 cm and the &,ee location 
forf = 100 Hz (top trace, 0.2 V/div.), and the speaker input (bottom trace, 10 mV/div). Horizontal 
scale : 10 ms/div. 

which cannot be the regular vortex merging process observed in figure 5(b ) .  The 
shear layer split described here is different from Bradshaw & Wong’s hypothesis of 
splitting of the shear layer structure at the reattachment region. A later phase of the 
shear layer outward movement is shown in figure 5(e ) .  Also, in figure 5 ( e ) ,  the 
structure observed close to the wall between x/h = 2 and 3 appeared to move 
towards the right, apparently split from structures travelling downstream. Figure 
5 ( f )  shows another phase of the flow, where one can see a highly turbulent inner 
layer. 

The downward and upward deflections of the shear layer represent a low- 
frequency flapping of the shear layer, also reported by others for reattaching flow 
over various geometries (Eaton & Johnston 1980; Cherry et al. 1984; Kiya & Sasaki 
1983). We believe that the low-frequency flapping of the shear layer plays a major 
role in the splitting of the shear layer. Whether the shear layer will split in the 
absence of the low-frequency flapping or with turbulent separation remains 
unanswered. 

In order to gain further insight into the behaviour and characteristics of the large- 
scale structures of a reattaching shear layer, the velocity field was investigated with 
and without perturbation. 

3.4. The instability characteristics 

In  recent years, a series of studies, both experimental (Sato 1960; Freymuth 1966; 
Miksad 1972; Browand 1966; Husain & Hussain 1983, among others) and theoretical 
(Michalke 19q5; Kelly 1967) have addressed the understanding of the growth of a 
small-amplitude disturbance in a shear layer with laminar separation. From these 
studies, much has been learned about the instability, the transition from laminar to 
turbulence and the growth of a shear layer as well as the dynamics of the large-scale 
structures in unbounded shear layers, such as jets, wakes and mixing layers. In order 
to understand the instability characteristics of a backward-facing step flow, the flow 
was perturbed at the separation point at discrete frequencies. 

Figure 6 is a typical oscilloscope trace showing both the velocity signal as seen by 
the hot-wire probe and the input signal to the speaker for perturbation frequency 
f = 100 Hz. The hot-wire signal was measured at x = 2 cm and the location. Note 
that the outer layer of the flow field is highly periodic with a frequency equal to the 
driving frequency of the speaker. The hot-wire signal shows slight non-linearity, 
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FIQURE 7. Longitudinal velocity spectra for both perturbed (solid) and unperturbed (dotted) flow 
at z / h  = 2 and the &,@, location. The St, values are (a) 0.136; ( b )  0.218; (c) 0.314; (d )  0.436; (e) 0.55; 
(f) 0.82; (9)  1.07; (h) 1.52. 

instead of being purely sinusoidal. The reason for this nonlinearity is the high level 
of perturbation amplitude. 

Effects of perturbation on the flow field are best demonstrated by the changes in 
longitudinal fluctuation intensity and velocity spectra. 

Figure 7 shows u-spectra for different perturbation frequencies along with the 
unperturbed spectrum at x lh  = 2 and the location. The perturbation frequency, 
f ,  is marked with an arrow. The vertical scale in figure 7 is arbitrary, because the 
primary emphasis is on the frequency content and not on absolute energy levels. 

3.4.1. The natural instability frequency of the shear layer 
Note that the unperturbed spectrum (i.e. the dotted spectrum) in figure 7 shows 

a peak at f x 100 Hz, the corresponding St, and St, values being 0.012 and 0.55 
respectively. At x / h  = 2, Roos & Kegelman (1986) observed a spectral peak at 
St, x 0.41 for unperturbed flow over a backward-facing step with laminar separation. 
They also observed a spectral hump at St, 0.8, and thought this to be associated 
with the natural instability of the shear layer; but measurements closer to the 
separation point revealed no peak at  8th x 0.8. This led Roos & Kegelman (1986) to 
suggest that the natural instability of the reattaching shear layer was at St, x 0.40. 
Bhattacharjee et al. (1986) found the most effective forcing frequency of a reattaching 
shear layer with non-laminar separation to vary between St, = 0.2 and 0.4. The large 
disparity in the St, values clearly indicates that the natural instability frequency for 
a reattaching shear layer does not scale with h. On the other hand, the natural 
instability (roll-up) frequency of a jet exit shear layer was found to be a t  St, x 0.012 
by Zaman & Hussain (1980). The natural shear layer instability frequency at 
St, x 0.012 has also been confirmed for other unbounded shear flows (Sato 1960; 
Husain & Hussain 1983; Hussain & Hasan 1983; among others). Eaton & Johnston 
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(1980) observed a spectral peak at 8th x 0.65 for x / h  < 2 for a natural flow over a 
backward-facing step with laminar separation. The 8th value when converted with 8 
represented St, x 0.013. It should be pointed out that Eaton & Johnston used a step 
height of 5.08 cm, which was different from ours. Neither Bhattacharjee et al. (1986) 
nor Roos & Kegelman (1986) reported their 8 values. This prevented us from 
calculating the St, values corresponding to their Sth values associated with the 
natural instability of the flow. A parallel study in our laboratory (Khan 1990) with 
different velocities, and thus with different 8-values, showed the natural instability 
frequency at  St,w0.012. Thus, it is suggested that the peak in figure 7 for the 
unperturbed spectrum is the natural instability frequency of the reattaching shear 
layer and it scales with momentum thickness B rather than with the step height h 
previously suggested. The spectral peak a t  St, x 0.012 for both the free shear layer 
and the reattaching shear layer indicate that the instability characteristics for these 
two types of shear layers are similar. In figure 7, the thick vertical line on the x-axis 
represents St, x 0.012. 

3.4.2. The effect of perturbation on u-spectra 
A comparison between the unperturbed and perturbed spectra in figure 7 shows a 

significant increase in the broadband turbulence level over the entire frequency band 
for perturbation St, between 0.136 and 0.55 (figure 7a-e). The increase in broadband 
turbulence level represents increased organization of the large-scale structures due to 
perturbation. Also, stable vortex pairing induced via perturbation can increase the 
overall turbulence intensity level compared to the natural flow (Zaman & Hussain 
1980). Note that the subharmonic (u) peaks present in figure 7(d and e )  represent 
pairing of the shear layer vortice, and thus contribute to the broadband increase in 
turbulence intensity. The pairing of the shear layer vortices has been clearly show in 
figure 5 ( b ) .  

In figure 7 (f), perturbation at St, m 0.82 shows suppression of the turbulence level 
below the unperturbed level for 70 < f < 200 Hz and increase of the turbulence level 
for f > 200 Hz. This can be explained by the fact that a laminar free shear layer 
perturbed at  St, x 0.017 suppressed the overall turbulence intensity (Zaman & 
Hussain 1981) below its unperturbed level. Zaman & Hussain (1981) did not observe 
any pairing event for perturbation at St, x 0.017. The growth of the instability wave 
was maximized at St, x 0.017, causing the instability wave to saturate earlier in x 
and thus suppress the turbulence intensity level of the flow. In figure 7 (f), note that 
the corresponding St, is about 0.018. Later it will be shown that the growth rate of 
the instability wave was the maximum for this case. But, unlike Zaman & Hussain’s 
study, figure 7 (f) shows a clear peak, indicating pairing of vortices. This perhaps 
is the cause of the increase in turbulence level for f > 200 Hz. Also present in figure 
7(f )  is a hump at u, a possible indication of a second stage of pairing. 

Figure 7(g) shows strong u and 2 components for 8th = 1.07. The St, value 
corresponding to the #f component is nearly equal to the natural instability 
frequency and, thus, is stronger than the peak at f. No local suppression in 
turbulence intensity similar to figure 7(f )  is observed here. Perturbation at 
8 t h  = 1.52 (figure 7 )  shows no effect on the velocity spectrum compared to the 
unperturbed case. 

3.4.3. The ‘step mode’ of instability 
The presence of one stage of pairing in figure 7(d, e) and two stages of pairings in 

figure 7 (f, g )  led us to examine what limited the number of pairing stages. It appears 
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FIQURE 8. Longitudinal velocity spectra at two cross-stream locations for St, z 0.84. Solid and 
dotted spectra are along Yo,,, and Yo,85 lines respectively. (a) r = 2 cm, (b) 4 cm, (c) 6 em. The arrow 
indicates the perturbation frequency. 

that the shear layer vortices undergo pairing until the St, value corresponding to the 
lowest subharmonic peak is approximately 0.2. This strongly suggests that the 
reattaching shear layer vortices go through pairing until the ‘shear layer ’ instability 
frequency is reduced to a final instability frequency equivalent to the ‘preferred 
mode’, discussed previously. We term this final instability frequency at  St, x 0.2 the 
‘step mode ’ of instability. This perhaps will explain why Bhattacharjee et al. (1986) 
and Roos & Kegelman (1986) observed very strong organization of the large-scale 
structures for perturbation at St, x 0.2. It should be pointed out that for unperturbed 
flow over a backward-facing step, Eaton & Johnston (1980) observed a spectral peak 
at  St, x 0.2 for xlh x 4, but for x lh  2 6 the St, value was approximately 0.08. While 
an additional stage of pairing is a possibility beyond four step heights, it is our belief 
that the drop in Sth value around the reattachment point is due not to pairing but 
to the intermittent upstream sweep of the large-eddy structure at the reattachment 
point. In fact, Troutt et al. (1984) observed that the pairing interactions were 
strongly inhibited in the reattachment region. 

3.4.4. Transverse extent of large-eddy activities 
For a reattaching shear layer, the wall imposes a restraining effect on the 

downstream development of the large-eddy structures. Thus, it would be instructive 
to identify the range of large-eddy activity in the transverse direction. 
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and lines at  three 
downstream locations are shown in figure 8, represented by dotted and solid lines 
respectively. As expected, the spectral intensit,y or the broadband turbulence level 
is higher a t  than at  The first subharmonic peak (upeak)  is present at  both 
transverse locations of the shear layer for all three downstream locations, but the 
relative levels of both f and 2 components with reference to the broadband 
turbulence level are lower at  At  xlh = 2 (figure 8 c ) ,  the f and 9 
peaks are nearly lost in the background turbulence level for the position. Also 
note that the 3 component is not even present in the inner shear layer (&.75) 

spectrum, whereas it is present in the outer shear layer spectrum (figure 8c). 
The downstream evolution of subharmonic amplitudes uo,5f for other perturbation 
frequencies also showed that the if or the 3 peak was present further downstream in 
the outer shear layer spectra. Thus, it can be argued that the identity of the large- 
scale structure is preserved further downstream in the outer shear layer compared to 
the inner shear layer (i.e. close to the wall). The loss of the structure identity in the 
inner shear layer is attributed to the following factors, besides the increased level of 
turbulence there : the splitting of the shear layer and thus the structures ; and the 
subsequent upstream sweep of a partial structure from the lower shear layer. 

3.4.5. Downstream evolution of uf 

The growth of wave amplitudes in a shear layer is used to identify the instability 
characteristics of the shear layer. The downstream distribution of the instability 
wave amplitude uf along the line is shown in figure 9 (a)  for various perturbation 
frequencies. The vertical scale in figure 9 is arbitrary. Data presented in figure 9 were 
taken from the longitudinal velocity spectra. The horizontal scale in figure 9 ( a )  
shows both xlh and x/O values. 

The overall features of the instability waves (uf) are qualitatively similar, but their 
details depend on frequency (figure 9 a ) .  The instability wave amplitude uf shows a 
nearly exponential growth region immediately after separation, followed by a non- 
exponential growth region to a maximum value and then decay. The maximum 
growth of uf is almost identical for 8 t h  = 0.218, 0.436 and 0.55. 

The peak for St, = 0.218 a t  x/O w 80 will be maximum if the difference in 
perturbation amplitude at the separation point is accounted for. This is the 8 t h  value 
closest to the ‘step mode’ and, therefore, has the most dominant peak in figure 9 ( a ) .  
The peak for Sth = 0.436 a t  x/O x 45 represents the first harmonic of the ‘step mode ’, 
while the other significant peak for St, w 0.55 represents the natural instability 
frequency because a cross-check of Strouhal numbers shows that for St, x 0.55 the 
corresponding St, value is 0.012. Note that the growth for other instability 
frequencies is significantly lower than the three cases mentioned above. With 
increasing Strouhal number, the peak of uf shifts upstream. The uf for 8th = 0.314, 
which was the available perturbation frequency closest to the subharmonic of the 
natural instability frequency, shows two peaks, at  xlh x 1 and x 2 respectively, 
compared to one peak for other frequencies. A similar dual peak variation was 
observed by Zaman & Hussain (1980) for the uOsf component when the jet was 
perturbed at frequency f. The uf peaks were reached by 1008 downstream, the value 
typically observed in other shear flows. 

For a hyperbolic-tangent mean velocity profile, Michalke’s (1965) spatial stability 
theory prediction for the most unstable disturbance frequency corresponds to 
St, = 0.0165. The corresponding value was found experimentally to be 0.017 by 
Freymuth (1966) in axisymmetric shear layers, 0.018 by Browand (1966) in plane 

The u-spectra for 8 t h  x 0.84, measured along the 

than at  
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FIGURE 9. The downstream distribution of (a) the instability wave amplitude uf and (b) the 
amplitude of its harmonics uzf,  along the line. The St, and St, values are 0, 0.136, 0.003; A, 
0.218,0.0048; 0,  0.314,0.007; V, 0.382,0.0083; A, 0.436,O.Ol; W 0.55,0.012; 0 ,  0.63,0.014, V, 
0.85, 0.019; a, 0.98, 0.021. 
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25 0.1364 2.98 110.25 2.94 
40 0.2182 4.77 114.45 4.59 
57.5 0.3136 6.85 109.5 5.88 
70 0.3818 8.34 112.87 7.8 
80 0.4364 9.53 115.60 8.08 
90 0.4909 10.70 115.70 8.25 

100 0.5454 11.90 114.00 10.1 
115 0.6273 13.70 110.00 12.75 
135 0.7364 16.10 110.20 13.08 
155 0.8455 18.50 102.00 7.67 
TABLE 2. Perturbation frequencies and corresponding growth rates 

water mixing layers and 0.017 by Miksad (1972) in a plane air mixing layer. However, 
the natural roll-up frequency of a shear layer was found to be St, x 0.012, as 
discussed in Q 3.4.1. Pfizenmaier (1973) also found that the natural roll-up frequency 
is lower than the most unstable frequency. This suggests that for a free shear layer, 
the natural roll-up (instability) frequency is lower than the most unstable frequency. 
In  order to find out if such is the case for the reattaching shear layer, the growth rate, 
a, for various uf was calculated. The growth rate for each Strouhal number was 
obtained by drawing a tangent to the uf curves (figure 9a)  a t  x /h  = 0 and is shown 
in table 2. The uncertainty in a measurement is estimated to be f0.65dB/cm. 
Although the initial growth region for the data in figure 9 (a) was not strictly linear 
like that of Freymuth (1966) and Miksad (1972), the a values show excellent 
qualitative agreement with those of Miksad’s data. Note that the most-unstable 
mode frequency corresponds to St, x 0.017, which is the same as that reported by 
others. This further strengthens our argument that a reattaching shear layer (or a t  
least a backward-facing step flow) is very similar to that of a plane mixing layer or 
an axisymmetric mixing layer with respect to its instability behaviour and 
downstream growth. 

3.4.6. Downstream evolution of uzf 
The downstream evolution of uzf (the amplitude of first higher harmonic 

component) corresponding to the data in figure 9(a) is shown in figure 9(b). The uzf 
component for St, = 0.136 grows almost exponentially and reaches a peak value at 
x /h  x 2. The maximum growth of uzf takes place for s t ,  = 0.314 with a peak a t  
x /h  x 1. The St, corresponding to the 2f component is equal to 0.013, which is the 
closest to the natural instability frequency of the shear layer and, thus, would 
explain the maximum growth. 

The non-exponential growth of the present uf data is due to the nonlinear effect 
present. Since, in our study, the perturbation level was not restricted to a level below 
which the instability wave grows exponentially, it will be worthwhile to compare the 
growth of the disturbance with theoretical studies dealing with nonlinear instability 
waves. 

3.4.7. Comparison with theoretical predictions 
The theory for the linear spatial or temporal evolution of an instability wave in a 

free shear layer is now well established (Michalke 1965; Kelly 1967; Mattingly & 



88 M .  A .  2. Hasan 

X 
-3 3 9 15 21 21 33 

0 5  10 15 20 25 30 35 40 

FIQURE 10. Normalized growth rate a/amar (amax is the growth rate at x = 0 cm) for ur values of 
figure 9(a). The St, values are: 0 ,0 .136;  0,0.314. -.-.-, A = 100 A = 0 (from 
Goldstein & Hultgren 1988). 

Criminale 1972) and has been successfully compared with experimental studies. 
However, the theoretical treatment of the nonlinear spatial evolution of an 
instability wave in a free shear layer is only just beginning. In a recent work, 
Goldstein & Hultgren (1988) studied the nonlinear spatial evolution of an externally 
excited instability wave in a free shear layer. Although the present study was 
performed for a backward-facing step flow, we felt that Goldstein & Hultgren’s 
results were the most appropriate for comparing to our data. 

Figure 10 shows the data for two cases from figure 9(a) in a/a,,, versus St, xlh 
coordinates, where a is the local growth rate of the instability wave, and a,,, is the 
maximum of a. For our data a,,, is the slope of uf a t  x = 0, but for Goldstein & 
Hultgren’s data it represents the growth rate for a linear instability wave. Note that 
in figure 10 the top axis is shown inX, defined by Goldstein & Hultgren (1988). Scaled 
growth rates of the fundamental instability wave as a function of X for two limiting 
values of the normalized viscous parameter A ( = 8/[Re,ASt,] ,  where ASt, is the 
difference between the local Strouhal number and the Strouhal number predicted by 
linear inviscid parallel flow stability theory) are also given in figure 10. A = 0 
represents the inviscid case. The data show excellent qualitative, and for some cases 
even quantitative, agreement with theoretical predictions. It is possible that this 
agreement is circumstantial and will need further support to our claim that the shear 
layer instability of a reattaching shear layer is similar to that of a plane mixing layer. 

In figure 10, note that the scaled growth rate for our data goes through an 
oscillation for - 3  < X < 3, before becoming negative for X > 3 (the corresponding 
x/xR value varies between 0.1 and 0.2). No such oscillation of the growth rate before 
becoming negative is observed for the theoretical curves. The oscillation or an 
increase of the growth rate prior to becoming negative is possibly an indirection of 
the shear layer splitting as it travels downstream. The splitting of the shear layer will 

sr,(xp) x lo3 
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FIGURE 11. The data from figure 9 (a) in the x/h coordinate. The St, values are : 0 0.136; 
A, 0.218; 0,  0.314; V, 0.382; A, 0.436; ., 0.55; 0 ,  0.63. 

change the instantaneous mean velocity (without altering the time-average mean 
velocity) profile and, thus, will affect the growth rate of the instability wave. In fact, 
the increase of the growth rate after an initial decay is possible if a secondary 
instability is created. It is possible that the shear layer splitting generates a new 
instability wave prior to the split. This is a highly speculative conclusion at best and 
more work will be necessary to establish the exact cause of the growth rate 
oscillation. 

3.4.8. Scaling of uf growth with h 
In figure 9 ( a )  it was observed that, with increasing f, the peak amplitude of he 

perturbation wave moved upstream. This suggests the dependence of the instability 
wave growth on the acoustic wavelength, A ,  (as well as on the hydrodynamic 
wavelength, provided the convection velocity of the wave is assumed constant) 
rather than on the step height h. A few cases of the data from figure 9 ( a )  are plotted 
in figure 11 with the downstream distance x normalized by A. Note that the peak 
amplitude for all perturbed frequencies occurs at  x / h  x 0.0075. The strong 
dependence of the instability wave on the acoustic wavelength has not been reported 
previously either for an axisymmetric shear layer or for a plane mixing layer. 

While the data presented in this section provide, for the first time, information on 
the nonlinear spatial evolution of an externally perturbed instability wave in a 
reattaching shear layer, they shed very little light on the effects of perturbation on 
the overall flow field. In order to address this question, the details of the flow field 
were documented with and without perturbation. 

3.5. The effects of perturbation on overall turbulence intensity 
3.5.1. Variation of u / U ,  with Strouhal number 

The overall level of turbulence intensity in a shear flow is generally recognized as 
a measure of the strength, organization and coherence of the large-eddy structures 
present in the flow. Figure 12 ( a )  shows the normalized longitudinal turbulence 
intensity u / U ,  at x / h  = 1 and at the cross-stream location Y,,,, for various 
perturbation frequencies. The dashed line shows the turbulence level for unperturbed 
flow. Note that the turbulence intensity level increases dramatically owing to the 
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FIQURE 12. (a) Normalized turbulence intensity u / U ,  vs. Strouhal number at s/h = 1 and the q,, 
location (i.e. U / U ,  = 0.99). (b) The downstream variation of u / U ,  along the line. The St, and 
St, values are: A, 0, 0 ;  V, 0.313, 0.007; ., 0.55, 0.012; 0 ,  0.736, 0.016. 

perturbation and the increase is present for the whole Strouhal number range 
investigated (St, = 0.09-1.08), which was limited by the operating range of the 
speaker. Between St, x 0.1 and 0.8, the u / U ,  data show three peaks. The first peak 
at  St, x 0.18 is the maximum and reinforces our claim that the most energetic 
structure of the step flow is a t  St, x 0.2, defined as the ‘ step mode ’ of instability in 
a previous section, and is equivalent to the ‘preferred mode ’ of free shear layers. The 
third peak is due to the instability associated with the natural roll-up frequency 
while the second peak is due to perturbation at  the subharmonic frequency of the 
natural instability frequency. Similar enhancement of flow structures in plane 
mixing layer for subharmonic forcing was observed by Ho &, Huang (1981). The ‘step 
mode’ of instability at St, x 0.18 was independently verified in a parallel study 
dealing with non-laminar boundary layer at separation (Khan 1990). Similar to the 
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1 kHz 
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FIQURE 13. Downstream evolution of both unperturbed (St, = 0) and perturbed (St, = 0.012) 
velocity spectra along the line. The downstream locations x/h are: (a) 0;  ( b )  0.333; (c) 1.0, 
(d) 1.333, (e) 2.0, (f) 3.0, (8)  4.0. 

'preferred mode' of free shear layers, it is our opinion that the 'step mode' of 
instability for a reattaching shear layer is independent of the initial condition at  
separation. This is supported by the observation made in the other studies of 
perturbed flow over backward-facing steps (Bhattacharjee et al. 1986; Roos & 
Kegelman 1986). Also, note that u / U ,  in figure 12(a) reaches a minimum at 
St, x 0.017. However, the minimum u / U ,  at St, x 0.017 is higher than the turbulence 
level for unperturbed flow. Neither Zaman & Hussasin (1981) nor Hasan (1983) found 
any vortex pairing for perturbation of free shear layers at St, % 0.017. But in the 
present study strong vortex pairing was observed for St, x 0.017 (as discussed in 
$3.4.2). It is argued here that the maximum growth rate of the instability wave at  
St, x 0.017 helped reduce the turbulence intensity level of the flow, while the vortex 
pairing increased the turbulence level - resulting in a net turbulence intensity level 
higher than the unperturbed level. 

3.5.2. Downstream evolution of u / U ,  
The downstream evolution of the normalized longitudinal turbulence intensity 

u / U ,  along the line for a few perturbed cases is shown in figure 12 (b ) .  The data 
for unperturbed flow are also included in the figure. Note that u for all perturbed 
cases is higher than the corresponding unperturbed case between x/h = 0 and 3.5. 
The peak turbulence intensity occurs at  z / h  x 4 for the unperturbed flow while for 
perturbed flow the peak shifts upstream by almost one step height. This is consistent 
with the upstream shift, due to perturbation, of the reattachment point, discussed 
previously. For St, x 0.012, turbulence intensity data develop an earlier peak at  
x/h x 1, the amplitude of this peak being always lower than the peak at z/h x 4. The 
peak at  x/h x 1 is due to the vortex pairing present for this case. It is clear from 
figure 12(b)  that the effect of perturbation on u is present up to a downstream 
distance of approximately four step heights. 

4 FLM 238 
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FIQURE 14. For caption see facing page. 

3.5.3. Downstream evolution of u-spectra 

Figure 13 compares the downstream evolution of the perturbed u-spectrum with 
its unperturbed counterpart. The flow was perturbed at  St, z 0.012. The spectra were 
measured at  the transverse location Note that the perturbation increases the 
broadband turbulence level and the amplification is maximum at x/h = 1.  The peak 
at the perturbation frequency is almost lost in the background turbulence level at 
x/h = 4, and the perturbed and unperturbed spectra are identical. This is consistent 
with the data of figure 12 (b). For x/h > 4, our effort to detect the persistence of clear 
velocity spectral peaks failed, even for measurements in the outer shear layer. A later 
study (Khan 1990) found that the spectral peak at  the perturbation frequency 
persisted as far as z/h = 11 for the turbulent separation boundary layer. This 
suggests that under perturbation, the large-scale organization is stronger for 
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FIGURE 14. Cross-stream distribution of longitudinal spectral energy for St, = 0.012 and its 
harmonics. (a) z / h  = 1, (b)  2, (c) 3, (d) 4. The symbols are: 0,  u,; 0,  uSf; A, Uaf and 0,  u~.~,. 

turbulent separation compared to laminar separation. The flow visualization pictures 
of Roos BE Kegelman (1986), with laminar and turbulent separations support this. 

3.6. Cross-stream energy distribution of large-eddy structures 
The turbulent energy distribution across the shear layer for perturbation frequency 
f and its harmonics at various downstream locations can be used to characterize the 
large-eddy structures present in the flow. Figure 14 (a-d) shows the one-dimensional 
spectral energy at f and its higher harmonic components, 2fand 3f, as well as the sub- 
harmonic component, 0.5f (if present), at downstream locations x/h = 1 to 4. Only 
the data for perturbation at St, = 0.012 are shown. 

Note that at  x/h = 1 (figure 14a), the distribution of uf and uZf is reminiscent of 
the behaviour found in the wake of a cylinder (i.e. the frequency component f 
associated with the vortex shedding from opposite edges of the cylinder shows two 
peaks along the edges of the cylinder, and the 2fcomponent shows a single peak along 

4-2 
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the centreline of the cylinder). This supports our observation in figure 5 ( c )  that the 
shear layer and, thus, the large-eddy structure splits a t  x/h x 1. The amplitudes of 
the two peaks in figure 14 ( a )  are not the same. As the shear layer splits, the structure 
in the lower half of the shear layer appears to be weaker than the structure in the 
upper shear layer, a fact also supported by the spectra in figure 8. At this location, 
the centreline of the shear layer is at  y(50) x 0, (y(50) = (y-yo,Io)/x) i.e. the location 
at  which uf and uY reach their minimum and maximum values respectively. Note 
that a t  y(50) 0.16, both uzf and uSf show a second peak. A slow oscillation of the 
outer shear layer structure may be responsible for these second peaks. 

At z /h  = 2 (figure 14b), the dual peaks and the dip for the uf component have 
shifted slightly away from the wall with respect to figure 14(a). A sub-harmonic 
component (0.5f) is present in the velocity spectrum a t  x/h = 2. The peak value of 
uo,5f is about 10 dB lower than the peak value for uf.  This sub-harmonic component 
is an indication of impending pairing activity in the shear layer. Note that the u,,,~ 
component persists over a wider range of y in the high-velocity edge (y(50) > 0) than 
in the low-velocity edge (y(50) < 0) of the shear layer. 

As the flow moves further downstream, at x/h = 3 (figure 14c), the maximum 
values of uo,5f and uf are almost the same. A continuing pairing of two vortices 
usually will give similar strengths for both the uf and u ~ , ~ ~  components, while a higher 
amplitude of uo,5f than uf is possible after the completion of pairing. This conforms 
with the higher peak amplitude of uo,5f than uf a t  x/h = 4  (figure 14d). This 
essentially implies that the pairing event in the shear layer is complete by z/h = 4, 
also supported by the photograph in figure 5(b) .  It should be pointed out that in 
figure 14 (c, d ) ,  the uZf and uy  components disappear for y(50) greater than 0.2, while 
uf and uo,,f components are present for y(50) x 0.3. This will result if, after splitting, 
the influence of the lower shear layer on the upper shear layer diminishes, i.e. the 
lower shear layer moves away from the upper shear layer or the two shear layers 
remerge. More work on the energy exchange as well as the phase relationship between 
dominant frequency peaks across the shear layer a t  various downstream locations 
will be needed for a complete understanding of the reattaching shear layer splitting. 
Such a study is beyond the scope of this work. Also note that a t  x/h = 4 (figure 14d), 
the uf and its harmonics disappear for y(50) < -0.1. This is because the structures 
are accompanied by increasing phase jitter and start breaking down around this 
location, giving high turbulence intensity in the region preceeding reattachment. 

4. Conclusions 
The flow structure and the nature of the instability wave in a reattaching shear 

layer, as well as the effects of controlled perturbation on such flow, have been studied 
experimentally for a backward-facing step geometry with laminar separation. 

The reattaching shear layer showed two distinct modes of instability, i.e. the 
‘shear layer mode ’ of instability, scaling with momentum thickness 8 a t  separation ; 
and the ‘step mode’ of instability, scaling with step height h. The corresponding 
Strouhal numbers, St, and St,, were 0.012 and 0.18. The shear layer mode of 
instability reduced to the step mode via one or more stages of pairing. The growth 
of the instability wave in the reattaching shear layer showed excellent agreement 
with the theoretical analyses predicting nonlinear spatial evolution of an externally 
perturbed instability wave in a free shear layer. 

Perturbation a t  discrete frequencies shifted the reattachment point upstream and 
increased the turbulence intensity across the entire shear layer for x/h < 4. The 
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upstream shift of the reattachment point with perturbation was primarily due to the 
increased growth rate of the shear layer prior to reattachment. 

Measurements of longitudinal fluctuating energy of the dominant structure and its 
harmonics across the shear layer at  various downstream locations for perturbed flow 
strongly indicated splitting of the shear layer as it travelled downstream. Flow 
visualization experiments appeared to confirm that the shear layer did split into two 
and showed the existence of a low-frequency flapping of the shear layer. Whilst the 
splitting of the shear layer and its dependence on the low-frequency flapping of the 
shear layer are believed to be amongst the first to be reported, more definitive 
conclusions regarding the phase of the low-frequency flapping at which the shear 
layer splits must await the availability of detailed correlations and conditional 
sampling type of measurements. 
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